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ABSTRACT 

The initial value problem for an unstable electron plasma 

has been solved by numerically integrating the Vlasov equation 

in one dimension. 

the-tail" situation of quasi-linear theory. 

followed well beyond the point at which the electrostatic field 

The situation chosen is the familiar "bump-on- 

The solution is 

energy has reached its maximum value. 

is eventually dominated by the single most linearly unstable wave 

number, which lies in the middle of the allowed range of wave 

numbers; 

long-period oscillations characteristic of trapped-particle 

periodicities. 

predictions may be explained in terms of the level of initial 

excitations, or "noise", from which the instability is assumed 

to proceed. 

The electric field spectrum, 

it undergoes what appear to be the beginnings of gentle 

It is argued that differences from quasi-linear 



? 

No collisionless plasma. phenomenon has been more extensively 

examined than the one-dimensional electrostatic two-stream insta- 

bility. A large literature has been generated, which we will not 

attempt to survey exhaustively here (cf., however, Refs. 1). This 

literature has not converged, however, to very many universally 

accepted inte 

phenomena. 

the two-stream instability in the collisionless electron plasma: 

retations of observable or numerically calculable 

A case in point is the "bump-on-the-tail" limit of 

the situation which is considered in quasi-linear theory. 

recent numerical investigation by Dawson and Shanny 

sheet model of the "bump-on-the-tail" electron plasma instability 

and found sharp disagreement w i t h  the analytical predictions of 

quasi-linear theory. 

A 
2 
treated a 

Several processes were suggested by Dawson and Shanny for 

this disagreement, all of which rely in the last analysis on 

particle discreteness. In their computations, the number of 

sheets per Debye length was on the order of 20, which raises some 

question as to how applicable a Vlasov description should be to 

the dynamics of the sheets. 

buxtrp-on-the-tail situation directly from the Vlasw equation, 

This has led us to compute a similar 



so that there are no discrete-particle processes of any kin&. 

eqec ted  to find the predictions of quasi-linear theory confirmed, 

and have been surprised t o  find that i n  many respects they were 

not. The departures from quasi-linear predictions we have observed 

are i n  large measure different from those seen by Dawson and Shanny 

and are believed t o  have a different origin; they are, however, 

perhaps of some interest  i n  their  own right. 

We 

Section I1 describes the computation and the results. In 

Sec. 111, we offer some physical interpretations of these results. 
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11. RESULTS OF THE COMPUTATION 

The method of computation has been discussed extensively 

elsewhere, and will only be summarized briefly here. The one- 

dimensional electric field E( x, t ) is represented by 

3 

and the electron distribution function f (x,v,t) by 

where hm(v) is the orthonormal Hermite polynomial of degree m. 

Substituting Eqs. (l), (2), (3) into the Vlasov and Poisson equa- 

tions, making use of the orthogonality and recursion properties 

of the basis functions, gives ordinary first-order differential 

equations 

then advanced forward in t%me from arbitrary initial values by 

a Runge-Kutta-Gill technique. Because of the reality of f, we 

need compute only for non-negative n, and the electric field is 

always recoverable from the m = 0 raw of the matrix. 

3 
in the time for the matrix elements Zm(t). These are 
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I n i t i a l  conditions for  this present computation are: 

where N = 8, E = 0.006, ko = 0.15, and 

2 fo(v) = (a)* {ho(v> + m h 4 ( v ) ]  e -v /2 (5) 

A l l  lengths are in  units of the electron Debye length, all 

velocities i n  units of the electron thermal speed, a l l  times i n  

-1 units of the inverse electron plasma frequency 

and E are dimensionless. 

, and both f 
P 

The equilibrium fo(v) i n  Eq. (5) i s  an even function of v 

which has i t s  maximum a t  v = 0; it has minimum value of zero a t  

v = J3 and local maximum value of about 0.032 at  v = J7. 

appears l a t e r  as the dashed l ine i n  Fig. 4. 

are really two electron beams, one right travelling and one l e f t  

travelling. 

known t o  have phase velocities about equal t o  these beam velocities, 

and t o  interact strongly mainly w i t h  particles i n  nearby portions 

of velocity space, we can t o  a good approximation ignore the effect 

of the left-travelling waves when talking about right-travelling 

It 

(Note that there 

Since the unstably growing electrostatic waves are 
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particles and vice versa. 

w i l l  contribute equally t o  the E,(tl9 however. ) 

The right- and left-travell ing waves 

There are several differences between these i n i t i a l  con- 
3 

ditions and those we have used previously. 

is that  there are eight harmonics of the fundamental wave number 

kept, whereas other problems were carefully tailored t o  require 

a t  most two, w i t h  1 El 1 >> \ E2 1 >> I E3 1 
condition for truncation of the Fourier series. 

The most apparent 

etc., as the convergence 

These eight wave 

numbers correspond t o  waves which i n  the l inear  l i m i t  completely 

span the bump w i t h  the i r  phase velocities, ranging from w/k Z 7.0 

fo r  El t o  w/k 

w i t h  very small E that i n  the l inear l i m i t ,  E2, E3, E4 are expo- 

nentially growing waves, w i t h  growth rates less than 0.1 w 

and E8 are heavily Landau damped, and ElY E5, E6 are e i ther  

1.54 for  E8. It was established by t r i a l  runs 

P’ E7 

marginally stable or weakly Landau damped. Thus i n  both the 

phase velocity spectrum and wave number spectrum, there is  a 

middle range of allowed linearly unstable waves, flanked on both 

sides by stable ones which i n  the l inear l i m i t  would never grow 

above their initial asrplitudes. All satisfy \ y/wp <e 1. 

A second difference from our previous canrputations l i e s  

in the large size of the matrix required t o  follow the dynamics 

of this situation. This is  because most of the act ivi ty  ( i n  
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velocity space) occurs at  velocities well above a thermal velocity, 

requiring us to use large values o f  m i n  Eq. ( 3 ) .  

for  example, consumed the equivalent of about ten hours of time 

on an IEM 360/65. 

A single run, 

3 
A t  the time we begin t o  throw away rows, the 

matrix contains about 8000 elements. zmn 
In  grossest outline, the development of the instabi l i ty  

3 
proceeded as in  ear l ie r  calculations. 

(< 10 wp-’, regime in  which l i t t l e  systematic evolution occurred, 

this being interpreted here (as before) as the time necessary for 

the Landau-damped modes present in  the i n i t i a l  conditions t o  go 

away. There i s  then a period of fa i r ly  calm exponential growth 

unt i l  the growing waves have reached large enough amplitudes for  

nonlinear effects t o  become important. 

t = 40 w 

of the maxima of the electrostatic f i e ld  energy appears to  be 

going into long period oscillations about a f in i t e  value which is  

on the order of a very f e w  percent of the t o t a l  energy (see Fig. 1). 

There was an i n i t i a l  

This happens at  around 
cv -1 . The growth then turns i t s e l f  off, and the envelope 

P 

In contrast t o  the expectations aroused by quasi-linear 

theory, however, the electrostatic f ie ld  energy does not become 

sJmred by adjacent wave numbers; rather E 

dominates the spectrum, containing for example about four times 

as much f i e l d  energy at t = 42.5 as a l l  of the other waves put 

- 
almost completely 3 

b 
cv 
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together. E versus time appears in Fig. 2. Aplot of E and its 

two nearest competitors, E2 and Eb, versus time is shown in Fig. 3 .  
3 3 

The point seems to be that the dominant wave number in the limiting - - -- 
spectrum is the fastest growing wave in the linear theory. Further 

_I- --- 
discussion of this point is deferred until Sec. 111. 

We turn finally to the velocity distribution function. For 
3 

reasons discussed in detail elsewhere, we can compute the electric 

field amplitudes accurately for up to twice as long as we can the 

distribution. 

time form of the distribution Ruzction than we would like. In 

Therefore we have less information about the long- 

Fig. 4, we show f0(v,42.5). 
and differences f'rom the quasi-linear final state.and from the 

velocity distribution camputed by Dawson and Shanny. 

This has the following similarities 

First, the hole in the distribution has filled in. However, 

there is little similarity to the "plateau" predicted by quasi- 

linear theory. 

thermal particles seen by Dawson and Shanny appear. For all 

practical purposes fo(v,t) remains equal to its initial value above 

v = 4.2. 

similar to that resulting from a particle-in-cell simulation of 

the two-stream instability recently done by Morse and Nielson. 

However, their calculation also includes some particle discreteness 

effects. 

Nor, however, does the high energy tail of supra- 

N 

The picture of fo(v,t) we have obtained is more nearly 

4 



111. DISCUSSION 

The unexpected dominance of the final-state electric field 

spectrum by a single wave number ( I E 
the most noteworthy result uncovered by the computation. 

>> all other 1 En 1 ) is 3 1  
Viewed 

from a coordinate system in which the right-travelling half of 

E appears time-independent, the "trapping width" of the wave, 

2/ 1 E3 1 / 3  k 0 ,  

3 
rv 

occupies at t = 42 a slice of velocity space of 

about &1.15 on either side of the phase velocity. 

sufficiently large to ''trap" most of the particles in the beam 

itself, and we believe this, crudely speaking, to be the mechanism 

This is 

by which the instability turns itself off. 

may in fact be invoked sometimes to eqlain cold plasma results.) 

The oscillations in maximum amplitude into which 1 E3 
to have gone by the end of the run seem to have a period of about 

(Similar mechanisms 

appears 

-1 30 w 

I E3 
an explanation parallel to that of our earlier case: 

. This is consistent with a mean value for the amplitude P 
of 0.1 (trapping period - %/43 ko 1 E3 1 a*. ), and suggests 

oscillations 

in the steady state are due to the periodicities of the trapped 

particle part of the electron distribution. 

This is a consistent picture of the 133niting state of the 

instability, but we must still answer the question of haw it 



happened that E grew t o  i t s  dominant position; i n  particular we 

need t o  reconcile th i s  with the prediction of quasi-linear theory 

which, superficially at least ,  would appear to  imply in i ts  

"H-like theorem" a sharing of the energy among several adjacent 

values of k, and a time-independent limiting s ta te  for  the electr ic  

f i e ld  spectrum. 

3 

We now address ourselves t o  that question. 
rv -1 The answer may be found in  the period between t = 10 u) 

P 
'v -1 and about t = 30 wP which i B  characterized by nearly pure 

exponential growth of the l inearly unstable waves, without, however, 

reaching large enough amplitudes for nonlinear effects to  appear. 

E has a significantly larger growth rate than the other unstable 

waves, and because the i n i t i a l  amplitude i s  so small it has an 

opportunity to  acquire almost an order of magnitude more energy 

3 

- -3 

than i t s  competitors before the nonlinear effects set in. 
1 

This is  the point at  which the quasi-linear equations 

would ordinarily be expected to  begin t o  have something to say 

about the evolution of fo(v,t). 

derivation is  the assumption that the i n i t i a l  electrostatic f i e l d  

energy i s  smoothly distributed over several adjacent k's; unless 

this i s  the case, it does not make sense t o  pass t o  the continuum 

However, implicit i n  their  

l i m i t  and write down the differential  equation for  the evolution 

of the spectral density at  al l .  In  our case, the " in i t i a l  condition" 



which has developed by the t i m e  of the onset of the nonlinear 

effects i s  essentially a delta- ction spike in  k-space: not 

close t o  what would be required for  the invocation of quasi-linear 

theory. 

In summary, then, we have determined a limiting s ta te  for 

a bump-on-the-tail electron plasma instabil i ty.  

not confirmed many of the predictions of quasi-linear theory for  

Vlasov plamas. 

quasi-linear theory: 

allowable i n i t i a l  conditions wbich w a s  perhaps not obvious before. 

This limitation may be given in  capsule form by saying that the 

"noise" level from which the quasi-linear f ina l  s ta te  must grow 

cannot be too much less than that of the f ina l  s ta te  spectrum. 

i t s e l f .  

from an " ini t ia l"  state which is  dominated by a single wave number, 

as we have seen here. 

plasmas we do not know. 

answered independently of specific experiments. 

The result  has 

Neither can it be honestly said to  have "disproved" 

only to  have made explicit  a limitation on 

Otherwise the nonlinear regime may effectively proceed 

How restrictive this  may be in actual 

It may be that the question cannot be 
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FIGURE CAPTIONB 

Figure 1. Development of the t o t a l  e lectrostat ic  f i e l d  energy, 

Note that quasi-linear 2 xi 1 Ei 1 , as a function of time. 

theory predicts a monotonic approach t o  a maximum value 

for  this quantity. 

Figure 2. The dominant f i e ld  component E ( t )  as a flunction of 

. At, maximum value, the trapping width of this wave 
3 

alone extends across the bump. 

Figure 3. Envelopes of the maxima of 1 E3(t) 1 and i ts  two nearest 

competitors. The other lEn(t)  1 a l l  remain smaller than 

these. By the time the amplitudes have grown large enough 

for  nonlinear effects t o  set  in, E ( t )  has monopolized the 

electrostat ic  f i e ld  energy. 
3 

Figure 4. The electron velocity distribution for  t = 0 and 

t = 42.5 UJ 

The phase velocity of the dominant wave E3 is about 2.25, 

and the "trapping width" extends about 1.15 units on either 

side of this. Note the absence of distortion above v = 4.1. 

(time of maximum electrostatic f i e l d  energy). 
P 

rv 
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